

Shoubra faculty of Engineering

Postgraduate Electronics and Communications

Computer Aided Design (CAD)

Lecture 2

- Scalar variables, Complex Numbers.
- Vectors in Matlab

MATLAB ${ }^{\circ}$
 The Langunge of Trchonical Conuputing

Reference:
Matlab by Example: Programming Basics, Munther Gdeisat

Chapter 2: Scalars in Matlab

Scalars in Matlab

> In Matlab, every variable created should have a value.
> Variables are created either by Matlab or by the user.
Variables created by Matlab are considered to be special variables, whose values are assigned by Matlab.

Matlab Special variables

$$
\gg p i
$$

Then press Enter. Matlab responds with

$$
a n s=
$$

3.1416

This command generates another special variable "ans" and assigns the value 3.1416 to it.
The special variable "ans" saves the result of any Matlab operation if the value of the result is not specifically assigned to a variable.

Matlab Special variables

> Other examples of special variables are i and j . The value for both variables is defined as $\sqrt{-1}$.
>>i
>>j

Then press Enter. Matlab responds with Then press Enter. Matlab responds with

> >>ans

$$
0+1.0000 i
$$

$$
\begin{aligned}
& \gg \text { ans } \\
& 0+1.0000 i
\end{aligned}
$$

> To get some help about the variable i

$$
\gg \text { help } i
$$

```
Command Window
    >> help I
    I Imaginary unit.
        As the basic imaginary unit SQRT (-1), i and })\mathrm{ are used co enter
        complex numbera. For exomple, the expresaiona 3+2i, 3+2*i, 3+2j,
        3+2%2 and 3+2*egre (-1) all have the same value.
        Since both i and I are functions, they can be overridden and used
        as a varicble. This permits you to use i or j as on index in FOR
        loopa, etc.
fx See also 2.

\section*{Matlab Special variables (cont'd)}

Changing the values of Matlab Special variables
\[
\gg p i=1
\]

Then press Enter. Matlab responds with
\[
\text { pi }=
\]

Now the value for the special variable pi has been changed to 1 .
> To restore the value of the special variable pi,
>>clear pi

To display the value of the variable pi, type at the Command Prompt
>>pi

Then press Enter. Matlab responds with

\section*{User-Defined variables}

\section*{Naming user defined-variables:}
- A variable name must not contain spaces or hyphens (-).
- A variable name can contain up to 63 characters.
- A variable name must start with a letter ( \(\mathrm{a}-\mathrm{z}\) or \(\mathrm{A}-\mathrm{Z}\) ), followed by any number of letters, digits \((0-9)\), or underscores \(\left({ }_{-}\right)\).
- Punctuation characters such commas ( , ) or apostrophes ( ' ) are not allowed, because many of them have special meanings in Matlab.
- A variable name must not be a Script M-file name or an existing Matlab function name.
- The use of a Matlab reserved word as a variable name is not allowed.

\section*{> Matlab is Case sensitive}

\section*{Clearing user defined-variables:}
>>clear y

\section*{Approximating Numbers}
> Matlab supports four functions to approximate real numbers:
round, fix, ceil, floor

\section*{"round" Function}
> This function rounds a real number upward, or downward, toward the nearest integer.
\[
\begin{array}{l|c}
\gg x=\operatorname{round}(2.51) & \gg y=\operatorname{round}(2.49) \\
x=3 & y=2
\end{array}
\]

\section*{"fix" Function}

This function truncates (eliminates) the decimal part of a real number, leaving the integer part unchanged.
\[
\begin{array}{c|c}
\gg x=f i x(2.51) & \gg y=f i x(-2.51) \\
x= & y=-2
\end{array}
\]

\section*{Approximating Numbers}

\section*{"ceil" Function}
> Rounds up a real number toward the nearest higher integer
\[
\begin{gathered}
\gg x=\operatorname{cei} 1(2.51) \\
x=3
\end{gathered}
\]
\[
\begin{gathered}
\gg y=\operatorname{cei} 1(2.49) \\
y=3
\end{gathered}
\]

\section*{"floor" Function}
\(>\) Rounds up a real number toward the nearest lower integer
\[
\begin{gathered}
\gg x=f 100 r(2.51) \\
x=
\end{gathered}
\]
\(\gg y=f 100 r(2.49)\)
\[
y=
\]
\[
2
\]

\section*{Difference between "fix" and "floor" Approximation Functions}
\begin{tabular}{|l|l|l|}
\hline a & fix(a) & floor(a) \\
\hline-2.5 & -2 & -3 \\
\hline-1.75 & -1 & -2 \\
\hline-1.25 & -1 & -2 \\
\hline-0.5 & 0 & -1 \\
\hline 0.5 & 0 & 0 \\
\hline 1.25 & 1 & \(\mathbf{1}\) \\
\hline 1.75 & 1 & \(\mathbf{1}\) \\
\hline 2.5 & 2 & 2 \\
\hline & & \\
\hline
\end{tabular}
> "fix" and "floor" functions give similar results for positive numbers.
> But, they give different results for negative numbers

\section*{Mathematical Expressions for Scalar Variables}

\section*{Precedence of Mathematical Operations}

Matlab evaluates mathematical expressions from left to right.
Mathematical expressions may contain addition, subtraction, multiplication, division, and exponential mathematical operations as well as parentheses.
> These mathematical operations are evaluated in the following order in Matlab:
I. Parentheses, by starting with the innermost set and proceeding outward
II. The exponentiation operation
III. Multiplication and division
IV. Addition and subtraction.

\section*{Mathematical Expressions for Scalar Variables}

\section*{From Mathematical Expressions to Matlab Expressions}
Example 1: \(r=\frac{x+y}{z}, \longrightarrow \gg r=(x+y) / z\);
> The addition operation needs to be evaluated first followed by the division.
> Since the division operation has a higher priority in Matlab than the addition operation, parentheses are needed to alter this priority order to give the addition operation a higher priority than that of the division operation.
\[
\text { Example 2: } \quad r=x+\frac{y}{z} \quad>\quad>r=x+y / z \text {; }
\]

Example 3: Write a Matlab program to evaluate r using the minimum number of parentheses
\[
r=\frac{\frac{x}{z^{3}+y^{4}}+\frac{x^{3}+y^{3}}{x^{2}}}{\frac{x^{2}+1}{y^{3}}-3} \longrightarrow \gg r=\left(x /\left(z^{\wedge} 3+y^{\wedge} 4\right)+\left(x^{\wedge} 3+y^{\wedge} 3\right) / x^{\wedge} 2\right) /\left(\left(x^{\wedge} 2+1\right) / y^{\wedge} 3-3\right) \text {; }
\]

\section*{Relational and Logical Operations for Scalar Variables}

\section*{The logic Class}
> Any variable with a logical class has a value of either true or false.
> Matlab represents true as 1 , and false as 0 .
\[
\gg r=\text { true }
\]

Matlab responds with
\[
r=
\]
\[
1
\]

To check the class of \(r\), type at the Command Prompt
\[
\gg \text { whos } r
\]

Matlab responds with


\section*{Relational and Logical Operations for Scalar Variables}

\section*{The Relational operators}
> Relational operators require two operands, and they compare two values.
> The relational operators produce variables with a logical class.
Matlab has six relational operators which are
1. Greater than " \(>\) "
2. Less than " <"
3. Greater than or equal " \(>=\) "
4. Less than or equal " \(<=\) "
5. Equal " \(=="\)
6. Not equal " \(\sim=\)

Example:
\[
\begin{aligned}
& \gg x=1 \\
& \gg y=2 \\
& \gg a=x>y
\end{aligned}
\]

Matlab responds and displays the value of a as

\section*{Relational and Logical Operations for Scalar Variables}

\section*{The Logical operators}
> Matlab has three logical operators which are:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. AND "\&" \\
2. OR " 1 " \\
> The logical operators produce variables with the \\
3. NOT "~" logical class.
\end{tabular}} \\
\hline AND " \&" Logical Operator & OR "|" Logical Operator & NOT " \({ }^{\text {" L Logical Operator }}\) \\
\hline Operand 1 Operand 2 \& & \(x \quad y \quad x \mid y\) & \[
x=0 ; \quad \text { result }
\] \\
\hline \(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \text { nonzero } & 0 \\ \text { nonzero } & 0 & 0 \\ \text { nonzero } & \text { nonzero } & 1\end{array}\) & \begin{tabular}{ccc}
\hline 0 & 0 & 0 \\
0 & nonzero & 1 \\
nonzero & 0 & 1 \\
nonzero & nonzero & 1 \\
\hline
\end{tabular} & \[
\begin{aligned}
& x=1 ; \\
& w=\sim x \longrightarrow w=
\end{aligned}
\]
\[
0
\] \\
\hline \[
\begin{aligned}
& x=1 ; \\
& y=2 ; \\
& g=x \& y \longrightarrow g=
\end{aligned}
\] & \[
\begin{aligned}
& x=1 ; \\
& y=2 ; \\
& n=x \mid y \longrightarrow n=
\end{aligned}
\] & \[
\begin{aligned}
& x=-1 ; \\
& y=\sim x \longrightarrow y= \\
& 0
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Relational and Logical Operations for Scalar Variables}

Combining Logical and Relational operators
> Logical and rational operators can be combined. For example:
\[
\begin{aligned}
& x=1 \\
& y=2 \\
& n=(x<3) \&(y<0)
\end{aligned}
\]

Matlab responds with


\section*{Complex Scalar Variables}

\section*{Creating Complex Scalar Variables}
\(\gg z=1+2 i\)
Matlab responds as follows:
\[
z=1.0000+2.0000 i
\]

You can use \(j\) instead of \(i\) to represent \(\sqrt{-1}\). For example,
\[
\gg z=1+2 j ;
\]

A third method to create a complex number is
\[
\gg z=1+2 * i ; \quad \text { or } \quad \gg z=1+2 * j ;
\]

\section*{Note}
\[
\begin{aligned}
& \gg i=1 ; \\
& \gg z=1+2 * i
\end{aligned}
\]
\[
z=
\]

Be careful not to use i and \(j\) as variable names. This may cause unexpected errors in the use of complex numbers.

\section*{Complex Scalar Variables}

\section*{Conjugate of a Complex Number}
\[
\begin{array}{lc}
\gg z=1+2 i ; & \text { Matlab responds as follows: } \\
\gg z 1=\operatorname{conj}(z) \longrightarrow z 1= \\
1.0000-2.0000 i
\end{array}
\]

Modulus and Angle of a Complex Number
\[
\begin{align*}
& \gg z=3+4 i ; \\
& \gg a=\operatorname{abs}(z) \\
& a= \\
& 5
\end{align*}
\]
> Note that the angle is given here in radians. To convert the angle from radians to degrees, multiply it by \(180 / \pi\).
```

>>angle_in_degrees = angle(z)*180/pi
angle_in_degrees=
5 3 . 1 3 0 1

```

\section*{Chapter 3: Vectors in Matlab}

\section*{Vectors in Matlab}

\section*{Transpose operation}
> Applying the transpose operation to vectors changes a row vector to a column vector and vice versa.
\[
\begin{aligned}
& \gg x=[2,3,5] ; \\
& \gg x=x^{\prime} ;
\end{aligned}
\]
\[
x=
\]
\[
\begin{aligned}
& 2 \\
& 3 \\
& 5
\end{aligned}
\]

Determining the Number of Elements in a Vector
\[
\begin{aligned}
& \gg x=[2,3,5] ; \\
& \gg n=1 \operatorname{length}(x) \longrightarrow
\end{aligned}
\]

Converting a Vector to a Column Vector
\[
\begin{aligned}
& \gg y=[1,2,3,4,5] ; \\
& \gg y=y(:)
\end{aligned} \longrightarrow \begin{array}{r}
\mathrm{y}=\begin{array}{r}
1 \\
1 \\
2 \\
3 \\
4 \\
5
\end{array}
\end{array}
\]

The Matlab colon operator, " : ", can be used to convert a vector to a column vector.

\section*{Creating Vectors Using Linear Method}
> The linear method can be used to create a row vector that has linearly spaced elements, that is, the difference between two successive elements in the vector is constant.
\[
\left.\begin{array}{lllllllll}
\gg x=0: 2: 10 & \longrightarrow & x= & & \longrightarrow & 2 & 4 & 6 & 8 \\
1
\end{array}\right]
\]

\section*{Creating Vectors Using the Linear Spacing Method}

The Matlab function 1 inspace \((\times 1, \times 2, N)\) can be used to create a row vector.
- x 1 is the start value.
- \(x 2\) is the final value.
- N is the number of elements in a vector.
\(\gg x=1\) inspace \((0,10,6) \longrightarrow x=\)

\section*{Vector Concatenation}
> Two vectors can be concatenated and become a single vector.
\[
\begin{aligned}
& \gg x 1=[1,2,3] ; \\
& \gg x 2=[4,5,6] ; \\
& \gg x=[x 1, x 2]
\end{aligned}
\]
\[
\longrightarrow \quad x=
\]

1 \begin{tabular}{llll}
1 & 2 & 3 & 4
\end{tabular}
\[
\begin{aligned}
& x 1=[1,2,3] ; \\
& x 2=[4,5,6] ; \\
& x=[x 1 ; x 2]
\end{aligned}
\]
\[
x=
\]
\begin{tabular}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{tabular}
\[
\mathrm{s} 1=[1 ; 2 ; 3] ;
\]
\[
s 2=[4 ; 5 ; 6] ;
\]
\[
s 3=[s 2, s 1]
\]
\begin{tabular}{ll}
4 & 1 \\
5 & 2 \\
6 & 3
\end{tabular}

\section*{Transpose Operation for Complex Vectors}
> Applying the transpose operation to a complex vector not only changes rows to columns and vice versa, but also conjugates the vector's elements
\[
\begin{array}{ll}
\hline \gg x=[2+i, 3-2 i, 5+3 i] \\
\gg z=x^{\prime} ;
\end{array} \quad z=\begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& 5.000000-1.0000-3.0000 i \\
&
\end{aligned}
\]
> To change rows to columns and columns to rows only without conjugating the vector y elements, the command y.' can be applied
```

y
>> z=y.'
z =
4.0000-3.0000i 9.0000 + 4.0000i 7.0000-5.0000i 12.0000 +11.0000i

```

\section*{The Relational Operations on Vectors}
\[
\begin{aligned}
& \gg x=[2,4,7,9,-1,2] \\
& \gg y=[-1,4,8,1,-4,6] \\
& \gg z=x>y \\
& z= \\
& 1 \begin{array}{llllll}
1 & 0 & 1 & 1
\end{array}
\end{aligned}
\]
( \(x>y\) ) command determines whether the value of each element in the vector \(x\) is greater than the corresponding element in the vector \(y\). The result is saved in \(z\) vector.

\section*{The Logical Operations on Vectors}
\[
\begin{aligned}
& x=[0,4,7,0,-1,2] ; \\
& y=[1,2,8,0,-4,6] ; \\
& z=x \& y \\
& z= \\
& \quad 0 \quad 1
\end{aligned}
\]
> Remember: An input to relational and logical operators is considered to be true if it has a nonzero value.

\section*{Accessing Elements in Vectors}

Accessing an Individual Element in a Vector Using its Index
create the vector \(x=[3,6,9,12,15,18]\)
\begin{tabular}{lllllll} 
Index & 1 & 2 & 3 & 4 & 5 & 6 \\
Value & 3 & 6 & 9 & 12 & 15 & 18
\end{tabular}
> To access the third element in the vector,
\(\gg r=x(3)\)
\(\longrightarrow \quad r=\)
9
> To access the last element in the vector,
\(\gg s=x(\) end \() \longrightarrow s=\) 18
\(>\) Try to access the \(7^{\text {th }}\) element in vector x :
\(\gg x(7)\)
Matlab responds with the error message

\section*{Accessing Elements in Vectors (cont'd)}

Accessing a Group of Elements in a Vector Using Their Indices
\(y=\)
\[
\begin{array}{llllll}
2 & 5 & 8 & 11 & 14 & 17
\end{array}
\]
> To access the first three elements of the vector \(y\)
\(\gg a=y(1: 3) ;\)
> To access the last three element of the vector y
\(\gg b=y(\) end -2 : end \()\);
\(>\) To access the \(2^{\text {nd }}, 3^{\text {rd }}\), and the \(4^{\text {th }}\) elements of the vector \(y\)
\(\gg c=y(2: 4) ; \quad\) or \(\quad \gg c=y([2,3,4])\);
\(>\) To access the \(2^{\text {nd }}, 4^{\text {th }}\), and the \(6^{\text {th }}\) elements of the vector \(y\)
\(\gg d=y([2,4,6]) ;\)

\section*{Accessing Elements in Vectors (cont'd)}

Accessing Elements in a Vector Using Their Values
\[
\gg y=[2,3,5,5,7,10,12] ;
\]
\(>\) To find the indices of the elements whose values are equal to 5 ,
\[
\gg \mathrm{a}=\operatorname{find}(y==5) \quad \longrightarrow \quad \mathrm{a}=\quad 34
\]
"==" sign checks whether the values of the elements in the vector y are equal to 5 .
> To find the indices of the elements in the vector y whose values are greater than 7,
\[
\gg b=\operatorname{find}(y>7) \quad \longrightarrow \quad b=
\]
> To find the indices of the elements in the vector \(y\) whose values are less than or equal to 9 ,
\[
\gg c=\operatorname{find}(y<=9) \quad \longrightarrow \quad c=\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}
\]
\(>\) To find the values of the elements in \(y\) whose values are less than or equal to 9 ,
\[
\gg d=y(c)
\]
\[
d=
\]

\section*{Accessing Elements in Vectors (cont'd)}

Accessing Elements in a Vector Using the Relational and Logical Operators
> Matlab has an interesting way of using the relational and logical operations to access elements in vectors.
\[
\left.\left.\begin{array}{l}
x=[0,4,7,0,-1,2] ; \\
y=[1,3,8,0,-4,6] ; \\
x>3
\end{array}\right) \quad \text { ans }=\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
\]
> The command \(y(x>3)\) here outputs elements of \(y\) that correspond to the same positions where \(x\) is greater than 3 .

\section*{Arithmetic Operations on Vectors}

\section*{Vectors addition and subtraction:}
> The addition and subtraction of two vectors is performed on an element-by-element basis.
> The vectors must be of equal dimensions.
\[
\begin{array}{lc|c}
x=[1,2,3] ; & \gg z=x+y & \gg s=x-y \\
y=[4,5,6] ; & z=\begin{array}{lllll}
5 & 7 & 9 & s= & \\
-3 & -3 & -3
\end{array}
\end{array}
\]

Adding a Number to a Vector
\[
\begin{aligned}
& x=[1,2,3] ; \\
& s=x+10 \\
& s= \\
& 11
\end{aligned} \quad 12 \quad 13 \text {; }
\]
add value to all elements in the vector x

Subtracting a Number from a Vector
\[
\begin{aligned}
& x=[1,2,3] ; \\
& t=x-2 \\
& t= \\
& -1 \quad 0 \quad 1
\end{aligned}
\]

Sub value from all elements in the vector x

\section*{Arithmetic Operations on Vectors (cont'd)}

\section*{Vector Multiplication}

Element-by-element multiplication
\[
\begin{gathered}
x=[1,2,3] ; \\
y=[4,5,6] ; \\
\gg z=x \cdot * y \\
\quad z= \\
\quad 4 \quad 10 \quad 18
\end{gathered}
\]

Matrix-based multiplication
\[
\begin{aligned}
& x=[1,2,3] ; \\
& y=[4 ; 5 ; 6] ; \\
& \gg z=x^{*} y \\
& z=
\end{aligned}
\]
> Note matrix multiplication condition: Number of columns of the \(1^{\text {st }}\) vector (x) must equal number of rows of the \(2^{\text {nd }}\) vector ( y )

\section*{Matrix Multiplication for Vectors}

Case1: The \(\mathbf{1}^{\text {st }}\) vector is Row vector and the \(\mathbf{2}^{\text {nd }}\) vector is Column vector
\[
\gg z=x^{*} y
\]
\[
\begin{array}{|l|l|l|l|l|l|}
\hline \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \ldots & \mathrm{x}_{\mathrm{n}} \\
\hline
\end{array}
\]

> The multiplication process here produces a single value scalar number.
Case2: The \(\mathbf{1}^{\text {st }}\) vector is Column vector and the \(\mathbf{2}^{\text {nd }}\) vector is Row vector

> The multiplication process here produces a square matrix.
Remember: It is important to realize that in matrix multiplication \(\mathbf{x y} \neq \mathbf{y x}\).

\section*{Arithmetic Operations on Vectors (cont'd)}

\section*{Vector Division}

Element-by-element Division
\[
\begin{aligned}
& x=[1,2,3] ; \\
& y=[4,5,6] ; \\
& \gg z=x . / y
\end{aligned}
\]
\(z=\)
\(0.2500 \quad 0.4000 \quad 0.5000\)

Matrix-based Division
> Matrix division of vectors does not have any mathematical meaning.

\section*{Plotting Vectors}

If we need to plot the function \(y=x^{\wedge} 2\), where \(x\) is in the range \([-3,3]\).
\[
\begin{array}{llll}
\gg x=-3: 1: 3 \\
\gg y=x . \wedge 2
\end{array} \quad \longrightarrow \quad \begin{array}{llllll} 
& \longrightarrow & & \\
-3 & -2 & -1 & 0 & 1
\end{array}
\]
\(\gg p 10 t(x, y)\)

> Plot ( \(\mathrm{x}, \mathrm{y}\) ) draws points of y w.r.t points of \(x\) vector and connects the points together using straight lines.
> Note: the \(1^{\text {st }}\) argument is the horizontal axis and the \(2^{\text {nd }}\) argument is the vertical axis

\section*{Plotting Vectors (cont'd)}

\section*{Increasing the resolution of a Plot}
> To improve the resolution of the plot, you need to increase the number of points for the x vector
\[
\begin{aligned}
& x=-3: 0.1: 3 ; \\
& y=x \wedge^{\wedge} ; \\
& \text { p1ot }(x, y)
\end{aligned}
\]


\section*{Plotting Vectors (cont’d)}

\section*{Changing The Color of a Plot}
\[
\gg p 10 t\left(x, y, ' r \prime^{\prime}\right)
\]
> Matlab support the colors:
- red "r",
- green " g ",
- blue "b",
- cyan "c",
- magenta "m",
- yellow "y",
- white "w"
- black "k".


\section*{Plotting Vectors (cont'd)}

\section*{Draw a Function as Points}
>>plot(x,y,'*')

> Different symbols can be used to represent points in a curve. e.g., "+", "o" or "x".
> For more information: use help
>> help plot

\section*{Plotting Vectors (cont'd)}

\section*{Labeling the x and y Axes}

\author{
xlabel('Input data') \\ ylabel('System output')
}


Adding a Title to a Figure
\(\gg\) title( \(\left.\quad y=x^{\wedge} 2^{\prime}\right)\)


\section*{Plotting Vectors (cont'd)}

\section*{Using Greek Letters}
a1pha \(=-2: 0.1: 2\);
beta \(=\) alpha.^3;
plot(alpha, beta)
xlabel ('\alpha')
ylabe1('\beta')
title('\beta = \alpha^3')


\section*{Adding/Removing a Grid to/from a Figure}
\(\gg\) grid on

>>grid off


\section*{Plotting Vectors (cont’d)}

\section*{Adding a Text to a Figure}
\(\gg \operatorname{text}(1,0.75, ' \backslash\) beta \(=\backslash\) alpha^3')

Here, the added text starts at the plot coordinate location \((1,0.75)\) on the figure.


\section*{Changing the Font Size}
```

a1pha =-2:0.1:2;
beta = alpha.^3;
plot(alpha,beta)
xlabel('\alpha','FontSize',24)
ylabel('\beta','FontSize',24)
title('\beta=\alpha^3','FontSize',17)
text(1,0.75,'\beta=\a1pha^3','FontSize',18)

```

\section*{Plotting Vectors (cont’d)}

Changing the Line Width
a1pha =-2:0.1:2;
beta \(=\) alpha.^3;
plot(alpha, beta,'LineWidth',3)


Multiple Plots
```

$x=-3: 0.1: 3 ;$
$y=x . \wedge 2 ;$
plot(x,y, 'bo-')
hold on
a1pha $=-2: 0.1: 2$;
beta = a1pha.^3;
plot(alpha, beta,'rx-')
hold off

```


\section*{Plotting Vectors (cont’d)}

\section*{Adding a Legend to a Plot}
\(\gg 1\) egend('y = \(x^{\wedge} 2^{\prime}\), ' \(\backslash\) beta \(=\backslash a 1 p h a^{\wedge} 3 '\), 'Location', 'SouthEast')


Note: 'Location' parameter sets the location of the legend on the figure: e.g.,
'SouthEast', ‘SouthWest', ‘NorthEast', 'NorthWest'

\section*{Plotting Vectors (cont'd)}

Multiple Subplots
\(x 1=-3: 0.1: 3\);
y1 = x1.^2;
subplot(2,1,1)
plot(x1,y1)
x2 = -2:0.1:2;
y2 = x2.^3;
subplot(2,1,2)
p1ot(x2,y2)


The subplot ( \(\mathrm{m}, \mathrm{n}, \mathrm{p}\) ) command breaks the figure window down into an \(\mathrm{m} \times \mathrm{n}\) matrix of smaller axes and selects the pth axis to display the current plot. For example,

\section*{Plotting Vectors (cont’d)}

Multiple Subplots (cont'd)

\section*{Figure No. 1}

File Window Help





\section*{Plotting Vectors (cont’d)}

Multiple Figures
0

\[
\begin{aligned}
& x 1=-3: 0.1: 3 ; \\
& y 1=x 1 . \wedge 2 ; \\
& \text { figure(1) } \\
& \hline \text { p1ot }(x 1, y 1) \\
& x 2=-2: 0.1: 2 ; \\
& \text { y2 }=x 2 . \wedge 3 ; \\
& \text { figure(2) } \\
& \hline \text { p1ot }(x 2, y 2)
\end{aligned}
\]


\section*{Chapter 4: Arrays in Matlab}

Next Lecture

\section*{Thanks for attention}```

